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Propagation of Signals of Finite Concentration in Gas
Chromatography. I. The Quasi-ldeal Model

PATRICK VALENTIN
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69 SOLAIZE, FRANCE

GEORGES GUIOCHON

LABORATOIRE DE CHIMIE ANALYTIQUE PHYSIQUE
ECOLE POLYTECHNIQUE PARIS 5EME, FRANCE

Abstract

A general system of partial differential equations describing the propagation
of signals of finite concentrations in a chromatographic column is derived.
These equations are related to the mass-balance equations for the solutes and
the carrier gas. The model used assumes that there is no temperature or pressure
variation at any point in the column when the signal is eluted, and that the
equilibrium between stationary and mobile phases is instantaneous. It is
shown that this model, which leads to a tractable set of equations, is generally
valid. The solution of this system of equations gives new insight into the
phenomena which are responsible for the peak deformations and broadening
in preparative scale chromatography.

INTRODUCTION

The simplifying assumptions made in linear chromatography, which
permit description of the propagation of the conventional analytical peaks
at zero concentration in order to account for their usually Gaussian shape
and to relate the peak broadening effects to the experimental parameters,
are no longer valid when the concentration of the solute in the mobile
phase becomes large (1).
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In a later work we shall show how to calculate the concentration range
in which the assumptions of zero concentration chromatography cease to
be valid and how to account for the peak deformation and the change in
the retention time observed in this range (2). In this work we derive and
discuss a general system of equations which could account for the im-
portant deformations which occur when a signal of finite concentration of
any shape is eluted throughout a chromatographic column.

This problem has been studied and discussed many times (3-7), but the
results previously published have not led to a general quantitative descrip-
tion and discussion of the peak shapes observed in preparative gas chro-
matography where solute concentrations have to be large. This situation
has probably arisen because the point of view of most workers in this
field was to consider the effects of large concentration as perturbations to
the zero concentration model of propagation, or because of their failure to
realize that the effects of diffusion or mass-transfer kinetics are second
order compared to the effects originating in the large concentration of
solute in the mobile and stationary phases. These are actually first-order
effects, as is demonstrated by the fact that the coefficients of the mass-
balance equations depend on the concentrations. This is the translation in
mathematical terms of the influence of concentrations on flow rate (the
sorption effect, modifying the overall mass balance in the gas phase) and
on the equilibrium constant of dissolution or adsorption (the isotherm
effect, modifying the mass balance of the solute). Both effects are complex
functions of the pressure gradient in the column in gas chromatography,
and should be accounted for.

A very broad and deep treatment of the general chromatographic prob-
lem at finite concentration has recently been published by Helfferich and
Klein (8). They covered the field excellently. Many specific cases, however,
are not or cannot be solved by their approach, and the problem studied
here, the propagation of a one-solute band at finite concentration with a
non linear isotherm and a large sorption effect, belongs to that group,
although it is a special case of multicomponent chromatography. Un-
fortunately, the hodographic transform H, used by Helfferich and Klein
(8), which greatly simplifies the solution of the system of equations de-
scribing the propagation and separation of a multicomponent band when
the partition coefficients are not independent, is useful only for linear or
Langmuir-type isotherms. In the more general case the H-transform can-
not be used and one should rely on the characteristics theory as described
by Jacob (9) or more recently by Aris and Amundson (710).

Furthermore, when the mobile phase is a gas, the sorption effect be-
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comes very important and should be accounted for quantitatively. The
mathematical difficulties of the problem are then much more important,
and it was possible for Helfferich and Klein to explain only in broad
terms how the sorption effect modifies the migration of bands when the
isotherm is linear (Ref. 8, pp. 348-350).

This work is thus an attempt to extend the previous work on multicom-
ponent chromatography (8) to the general case of gas chromatography
where the sorption effect and the effect of a nonlinear isotherm do coexist
and simultaneously influence the band migration, sometimes synergisti-
cally, sometimes in an antagonistic way. This illustrates the major differ-
ences between gas and liquid chromatography, the sorption effect and the
mobile phase compressibility being negligible in this later case.

Finally, we have chosen to put the main emphasis on the study of the
stability and transformation of shocks or discontinuities as a means of
following the change of peaks shape during their migration. The cor-
responding stability diagram discussed in this work can be considered as
the counterpart of the composition grids of Helfferich (8) which permits
the study of the transformation of the continuous part of the signal.

The rigorous mathematical formulation of the problem would be pos-
sible although many difficulties would arise in the significance or even
definition of some kinetics parameters. It is well known that a complete
solution of this problem at the analytical level has not yet been given,
although most of the phenomena seem to be understood and a satisfactory
description of the experimental results has been achieved (/). The situation
is much more complex when the concentration is finite, and before trying
to account for the kinetics effects in details, it seemed to us interesting to
study quantitatively the first-order effects, and to determine the degree
to which they account for the deformation of the peaks which are ob-
served at large concentrations and which cannot be accounted for in
kinetic terms only. The complete system of equations is not mathematically
tractable. A considerable simplification occurs if the broadening effects of
mass-transfer kinetics are neglected, which is another reason to consider
only the first-order terms. Finally, the justification of this assumption
lies in the high rate of mass transfers under the experimental conditions
prevailing in chromatography, so that the first-order effects become the
most important at moderate concentrations, as will be shown (2), the
kinetics effects taking place only to dampen the very steep concentration
gradients which would otherwise occur, and thus to “soften the angles.”

Such a physicochemical model would be useless if it had no predictive
value. Accounting satisfactorily for the first-order effects of concentration
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in chromatography at finite concentration will lead to a new, more ac-
curate, general method of determining dissolution or adsorption isotherms
(2). It will give a quantitative method to optimize the productivity of indus-
trial prep-scale chromatographic units (/1), and it will also allow us the
estimation of the range of concentration in which the zero-concentration
conventional theory of chromatography is valid, and how deviations from
the ideal model can lead to effects which are well known by the analysts
but have not yet been explained.

Finally, the justification of our model lies in its success, its mathematical
tractability (/2), the excellent agreement between the concentration
profiles obtained from computers and from chromatographs (11}, and in
its other applications (2). _

We shall first describe the assumptions made in deriving the systems of
equations and discuss their justification as well as their conditions and
range of validity. Then we shall derive the equations which describe the
propagation of continuous parts and of discontinuities.

A MODEL OF PROPAGATION OF SIGNALS OF FINITE
CONCENTRATION

Some of the assumptions made in this model have been suggested in
previous work (3-7). The most important new characteristics of our model
are the combination of:

(1) The explicit use of thermodynamic data at equilibrium in the equa-
tions. This is especially important in the study of the conditions of stability
of the discontinuities and of the temperature influence on these conditions.

(2) The influence of the pressure gradient on the migration and de-
formation of peaks is introduced and accounted for.

(3) The model makes use of the existence of the stagnant mobile phase
(2), the fraction of the mobile phase which is inside the support particles.
This is important because it allows an accurate definition and choice of
the velocities which are involved in the equations.

(4) A double set of equations of mass balance because of the existence
of discontinuous solutions to the propagation problem.

General Assumptions

These assumptions regard the behavior of the gas phase, the equilibrium
between the two phases, and the temperature.
(1) The gas phase behavior remains ideal both for its compressibility
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and for its mixing properties. In addition, the flow rate is always deter-
mined by Darcy’s law (/3) applied to the pure carrier gas. The pressure
profile is the same whether the column is in steady conditions or during the
elution of a large concentration zone.

(2) The mobile and the stationary phases are always in equilibrium.
Furthermore, the rate of the axial diffusion is zero and the rate of the
radial diffusion is infinite, so the composition of both the gas and liquid
phases are constant in a column cross-section.

(3) The column is isotherm. The variation of local temperature when
the zone is eluted is neglected.

We shall now discuss the reasons, the range of validity, and the im-
portance of the assumptions before proceeding to the derivation of the
equations.

Ideal Behavior of the Gas Phase

The carrier gas has already been assumed to behave ideally in chromato-
graphy. It has been shown that even for carbon dioxide this assumption is
realistic (14), so it seems to be quite valid in our problem, too, especially
if it is taken into account that the partial pressure of the solute does not
exceed 0.3 bar at the injection in practice (/5) and that this pressure is
reduced as the band spreads. Further corrections should probably be
applied, however, for the contribution of gas phase nonideality to the
equilibrium constant between both phases.

Flow Rate and Pressure Profiles

It is easy to illustrate the influence of the pressure gradient in the column
as follows. If a mixture of carrier gas and solute vapor of constant con-
centration is steadily fed into a column, as in frontal analysis, an equili-
brium is eventually reached between the two phases and there is no more
macroscopic exchange of solute between these phases. The situation is
then identical to the expansion of the mixture in a tube, from column inlet
to outlet pressure, with no change of composition whatsoever. The partial
pressure of the solute is proportional to the local pressure, and accord-
ingly its local concentration in the stationary phase decreases in propor-
tion to this pressure. In elution chromatography for a single compound,
the partial pressure and concentration can only be lower than the cor-
responding values in this steady state, and this has important consequences.

The retention of a compound is determined by the ratio between the
number of sorbed molecules and the number of molecules in the gas phase
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at equilibrium in the local conditions, When the isotherm is not linear,
this pressure variation directly affects the retention by changing the
equilibrium constant. In addition, whether the isotherm is linear or not,
therc is a second effect of decompression on the gas velocity.

It is necessary to include the pressure gradient in the equations. Un-
fortunately, it is not possible to do so by referring to some average pres-
sure, as we shall show later that the effect of the pressure gradient is a
function of the isotherm itself (2). It is not possible to solve the equations
derived without some simplification. This is the reason why we shall as-
sume with Haarhoff (16) that the pressure profile is unchanged by the
elution of a large concentration signal. This assumption is justified by the
observation that the local pressure does not vary by more than a few
millibars during the elution of a large concentration band (I6). Mathe-
matically, this means that

oPot = 0 1)

whereas Jp/0z and du/dz arc not zero. The pressure profile is given by
integration of Darcy’s law:

P=Pﬁ-%@f—n5 @)

where P(z) is the local pressure, P; and P, the inlet and outlet pressures,
and L the column length (/3).

We shall also neglect the influence of the solute concentration on the
viscosity of the mobile phase. This assumption is valid in elution chromato-
graphy where the bands are relatively narrow compared to the column
length and the solute concentrations are smaller, but some correction
should probably be introduced if the model is to be applied to frontal
analysis.

Equilibrium between the Two Phases

It is presently impossible to solve the equations of a model which as-
sumes a finite rate of mass transfer between the two phases. The simpler
problem already discussed here is very difficult to solve, and extensive
computer time is necessary to obtain actual concentration profiles for given
experimental conditions (/7). Furthermore, because the kinetics of mass
transfer is not well understood under the zero concentration assumption,
where it plays a major role, it would not be easy to express it mathemati-
cally for finite concentrations [for example, should the coupled theory (1)
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be generalized and how?] not even to speak of the problem of making a
reasonable estimation of the rate constants necessary for practical ap-
plications.

The equilibrium assumption is therefore necessary in order to have a
solvable system. Its justification arises from the fact that the effects of
diffusion and other kinetic phenomena are second-order sources of band
broadening compared to those originating from the finite concentration,
as explained above; i.e., the coefficients of the mass-balance equations are
function of the concentrations, and thus the first partial derivatives dis-
appear at zero concentration, whereas the equilibrium assumption results,
in mathematical terms, in neglecting the second partial derivatives in these
equations.

This has a very important consequence which has not been fully realized
yet, although its existence was known before (&). It has been understood
and used systematically by Jacob for the first time (9). This is the appear-
ence and propagation of stable discontinuities (/7). It is difficult to
explain with accuracy this effect which originates from some special
properties of the system of equations to which our model leads but is not
actually observed, although the very asymmetrical peak profiles observed
[for example, with the early peaks in capillary columns (very sharp front
and “‘normal” tail) or with overloaded columns (very sharp front or
tail)] illustrate pretty well the situation for the analysts (cf. Fig. 1), The
system of equations we shall describe has mathematical properties similar
to those of the systems describing two much more widely known phe-
nomena which, by analogy, may also illustrate the situation, although

FiG. 1. Origin of discontinuities of concentration in conditions in which the

sorption effect, for example, is important. The front of a band initially Gaussian

(a) of large concentrations becomes steeper and steeper (b) until a vertical

inflection tangent appears (¢} which is the origin of a concentration discontinuity
(d). A peak profile, such as e, would be physical nonsense.



14:18 25 January 2011

Downl oaded At:

252 VALENTIN AND GUIOCHON

care should be taken not to draw the analogy too far. These are the shock
waves and the rolling sea waves. A shock wave is a pressure discontinuity
which propagates faster than sound; the local compression heats the oscil-
lating medium, and so the waves which would tend to propagate faster
than the shock wave enter a region of space where air is cold and are de-
layed whereas the waves which would tend to propagate slower than the
shock wave are in a hot region of space where their speed becomes faster
and they join up with the shock, hence its stability. Mathematically, the
conditions of stability of these discontinuitics are similar; they correspond
to the conditions of nonexistence of the characteristics of the system of
equations (8, 12, 17,-18). The problem of the stability of the concentration
discontinuities in finite concentration chromatography can be illustrated
by the rolling waves.

In some circumstances, for example, near the seashore, waves develop a
rolling form. This phenomenon, which would be impossible if gravity was
stronger, arises because, in the conditions prevailing near the beach, the
equation describing the continuous profile of the wave propagating along
the axis Oz yields three values of the water height in some range of z values.

The system of equations describing the propagation of a concentration
profile in chromatography has similar properties, as originally shown by
De Vault (79) for liquid chromatography (cf. Fig. 1). Clearly however,
such a shape is impossible for a concentration profile. De Vault has
suggested a solution: to replace the impossible part of the continuous
profile obtained as a solution of the standard equations by a vertical line
which conserves the profile area (/9), as shown Fig. 1. A more rigorous
solution, more general and satisfactory from the point of view of the
physical chemist, is to consider that concentration discontinuities are pos-
sible parts of the peak profile and to write the mass-balance equations
around them to determine their propagation rate.

A discontinuity appears when an inflection tangent to the profile be-
comes vertical. Then the discontinuity builds up at the expense of the
neighboring continuous profiles until it eventually reduces and disap-
pears if the column is long enough. Because chromatography is essentially
a dilution process, the conditions of zero concentration will always prevail
at the end and the peak will become Gaussian. A discontinuity can
reduce progressively to an inflection point with the vertical tangent and
disappear. In some cases it can also collapse as a whole.

It might be argued that discontinuities are mere artifacts introduced
only by our unability to tackle them with a more accurate model which
incorporates kinetic effects. Although it is true that diffusion relaxes the
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infinite concentration gradients corresponding to discontinuities, the
fundamental effects from which they originate are real. The very steep
peak fronts or tails correspond to conditions in which the first-order and
the second-order effects compensate, and in which the trend to a steeper
profile because of the large concentration effect is compensated for by the
dampening effects of diffusion which smoothe the profiles. It is known
that in such conditions numerical solutions to systems of partial differ-
ential equations have a strong trend toward divergence. So, as long as the
peak profile cannot be described by an analytical solution, the study of
discontinuities properties and propagation is necessary.

It can also be shown mathematically that (20) in the general case where
first-order and dispersional effects arise together, some parts of the peak
propagate merely by translation, with no change in shape. When disper-
sional effects tend to zero, these nondeforming parts tend to become
vertical. Thus discontinuities in the first-order, nondispersional model
can be considered as a limiting case of the general model and should not
be regarded as an “‘artifact.”

In summary, our model will require the derivation of two systems of
equations, one determining the propagation of the continuous part of the
concentration profile and the other determining the propagation of the
discontinuities. The study of the interaction between the two systems, i.e.,
the appearance and disappearance of discontinuities during the propaga-
tion of a band, will be an important part of the resolution of the problem.

Radial Equilibrium

The assumption of a zero radial concentration gradient through a chro-
matographic column is indeed a consequence of the more general equilib-
rium assumption. Most of the peak broadening in prep-scale columns at
very low sample size, when second-order effects are predominant, origi-
nates in the radial heterogeneity of the column packing (21). More
recently, however, columns of large diameter (5 in. to 1 ft) have been
reproducibly packed with an efficiency at zero concentration which is
of the same order of magnitude as the efficiency of analytical columns
(15), thus making this assumption quite realistic.

Isothermal Elution of Large Concentration Bands

The elution of a chromatographic band generates a temperature profile
which is a function of the concentration profile or, more precisely, of its
derivative (although the temperature effect is not proportional to the
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derivative of the concentration profile). This effect has been studied by
Bayer and Hupe and used as the basic principle of a new detector (22).
More recently, Hupe has studied the temperature signal which appears
during the elution of a large concentration band and shown that tem-
perature variations can be as farge as 15°C (23). This effect, however, is
very much dependent on the thermal conductivity of the packing, and it is
well known that the thermal conductivity of powders depends greatly
on the nature of the surrounding gas. When nitrogen, which was used as
the carrier gas by Hupe, is replaced by helium, which is much more
interesting as a carrier gas in prep-scale gas chromatography because it
leads to larger productivity (15), we observed on a 5 in. diameter column a
much smaller effect: 1 or 2°C only.

A small correction might be necessary for larger diameter columns,
but this can be treated as a small perturbation to the isothermal propaga-
tion.

Influence of Mass Transfer on Band Propagataion

The material balance equations are usually derived in chemical engineer-
ing with the assumption that the gas velocity throughout the column is
not affected by mass transfer between stationary and mobile phases, This
approximation is justified when these mass transfers are stationary. It
would not be valid in chromatography where these transfers are in a
transitory state.

The influence of mass transfers on the propagation, the sorption effect
(24), is simple to explain. The carrier gas velocity is larger than the migra-
tion rate of a band. Let us consider the volume element of a pure carrier
gas which arrives in a region of the column where the solute concentration
is not zero. Part of the solute dissolved in the stationary phase vaporizes
into the gas phase; its partial molar volume in the gas phase is about 200
times larger than in the solution. The migration rate of the back border
of the carrier gas volume is determined by the boundary conditions of the
system. Thus the front border accelerates because of this increase in the
gas volume (the local pressure does not change appreciably). This explains
why, during the migration of a band in certain experimental conditions,
the large concentrations tend to migrate faster than the lower concentra-
tions. Because it is impossible for the larger concentrations to leave before
the lower ones, the peak profile becomes steeper and a stable discontinuity
builds up.

As the peak migration causes a local increase in the gas flow velocity,
it is no longer possible to describe the signal propagation by one mass
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balance equation because this velocity becomes a variable. Such an equa-
tion should be written explicitly for the carrier gas and each solute. The
solutions of the system will give the concentrations and the velocity
profile at any time.

The fact that the concentration profiles of two solutes and the velocity
profile are given by one common system of equations demonstrates the
interaction of the bands of two solutes, at least as long as they are not
resolved from each other, when the concentration is large and it is impos-
sible to consider these different phenomena separately (25).

Another important consequence of this interaction between concentra-
tion and flow velocity deals with the relationship between retention time
and retention volume. Because of the sorption effect, the ratio of the reten-
tion volume to the retention time for a given mole fraction X is not the
outlet carrier gas flow rate, but the actual local flow rate, with the sorption
effect included, or its average along the column if the pressure gradient is
not negligible. As in most cases the retention time is the observed data,
the retention volume, which cannot be derived simply from ty anymore,
loses most of its interest in large concentration chromatography. The
retention time, which is easy to measure, has the further advantage of being
identical with the residence time as defined in reactor theory in chemical
engineering.

Although in practice the sorption effect is important only in gas chro-
matography, it is general to all types of chromatography. The dissolution
of the solute in the stationary phase results in an increase of the volume
of this phase and a decrease in the volume of the stagnant mobile phase
(2), which in turn results in an increase in the apparent rate of migration
of \he solute. The adsorption itself results in a decrease in the local velocity
of the mobile solution. Both of these effects compensate exactly only if the
partial molar volumes of the solute are the same in the two phases, other-
wise the sorption effect is a function of the difference between these two
partial molar volumes. Thus the sorption effect is really important only in
gas chromatography where the partial molar volume in the gas phase is
about 200 times larger than the partial molar volume of the solute in the
solution (or of the adsorbate). One could add that the sorption effect is
not restricted to chromatography but is present in any separation process
where there is any ‘“‘radial” mass transfer occurring in a longitudinal flux,
such as in distillation and absorption.

We shall now proceed successively to the derivation of the systems of
equations describing the propagation of continuous concentration profiles
and of concentration discontinuities.
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SYSTEM OF EQUATIONS FOR THE PROPAGATION OF
CONTINUOUS SIGNALS

We shall assume in this section that all functions are continuous and
can be differentiated. This assumption is a very important one and mus¢
be made because we shall show that we must also consider discontinuous
parts in the signal and that these parts obey quite different equations. This
is an example of cases where rigorous mathematics is very important in
physical chemistry.

We shall use the same packing model as the one used to derive a general
theory of chromatography at zero concentration and to unify the theories
of packed and capillary columns (2). This model distinguishes between
two fractions of the mobile phase which act quite differently: the mobile
fraction, which is outside the packing particle and possesses all the kinetic
moment, and the stagnant fraction, which impregnates the porous par-
ticles, is motionless, and is in direct contact with the stationary phase
(cf. Fig. 2). Mass transfer between the mobile fraction (which is the only
one available for convection) and the stationary phase takes place through
the stagnant fraction. The equilibrium constant between these mobile and
stagnant phases is unity. An important advantage of this model is to clar-
ify definitions and the choice of the various velocities and the average
velocities (2).

Mass Balance of the Solute

Let n,” be the number of mole of Solute A in the mobile fraction of the
gas phase, n,® the number of mole in the stagnant fraction, n,* the number

Ge
d ’
S—— _
{
c
| 4
b v
a

FiG. 2. Scheme of a gas-liquid chromatography column. (a) Solid support.
(b) Stationary liquid phase. (¢) Stagnant gas phase inside thc porous particles
of support. (d) Mobile gas phase, outside the support particles.
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of mole in the stationary phase, and #1, the cross-section average, inter-
stitial gas velocity:
Y

o= 3

where Q is the local volume flow rate, A is the column cross-section area,
and e, is the external porosity (related to the column permeability). V; is
the total volume available to the gas phase in the column, and V, is the
volume available to the mobile fraction. V, is the extraparticle void volume
of the column (V, = ¢,V,, where V_ is the total volume of the column,
V, = AL).

The mass balance for the solute during the time df in a fraction of the
column of length dz is

?EL’" + ?.’L*_s + an_AL = — ____6(aanm) 4
ot ot ot 0z

because the contribution of diffusion to the mass flow is neglected. As the
various phases are assumed to always be in equilibrium, the total number
of solute moles in the gas phase, n,°, is

V.
m = ny" 4 ng = on" (5)

since the equilibrium constant between the mobile and stagnant fractions
of the gas phase is unity. Combination of Egs. (4) and (5) gives

on,®  on,* d(a.v,
Ona O __< ;Ge,,AG> ©)

ot ot &z

We shall define a new term which has the dimensions of a velocity by

_ AV

U=y @)

We shall give the physical significance of u in the section entitled System of
Equations. Taking into account this definition of u, we write Eq. (6) as

anAG , 5(unAG)
T+ k) = -5 ®

, on,k on,C
k= <—az_>/< at ) ©)

with
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This definition of &’ is justified because of its properties as we shall demon-
strate. As discussed above, we shall assume that »,L is a function of P and
n,° only; not an explicit function of time and the abscissa (equilibrium as-
sumption). We shall also assume that the local pressure is not a function of

time.
(1) _ (2 (20 _ (2nd) ( o
ot ), \on¢),\ ot ), \on )\ &t ). (10)

Then
. [on,F
k' = (0'1AG>, (11)

k’ as defined by Eq. (9) is a function of the equilibrium isotherm of Solute
A between the gas and stationary phases. This is a generalization of the
conventional definition of the column capacity factor to the case of non-
linear isotherms. We shall later study the properties of k' as defined by
Eq. (11).

It should be noted that this definition of &’ is quite general and is not
restricted to the ideal gas phase. In fact, when, as is done below, the gas
phase is assumed to be ideal, the p subscript can be dropped and the partial
differential Eq. (11) becomes a simple differential onc.

In this case the equation of state of an ideal gas can be written

and

VeXaSP  VoXP
6 _Yeial Vg
" TTRT T RT (12)

where P is a function of z but not of ¢.
The mass-balance equation of the solute (cf. Eq. 8) then becomes

ouPX)
> (13)

oxX ,
P_67 A+ k)=
Note that Pu is not constant in Eq. (13), as in analytical chromatography,
since the solute vapor contributes appreciably to the local velocity.
Mass Balance of the Carrier Gas

Because the carrier gas is not dissolved in the stationary phase, the
mass balance of the carrier gas can be derived from Eq. (13) when X is
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replaced by (1 — X) and k' by 0:

oX _ duP(l = X)]

P =TT 14

System of Equations

There are three unknowns (4, P, X) which are functions of two vari-
ables (z and r). The three partial differential equations are Eqs. (2), (13),
and (14). A complete definition of the problem also involves Eq. (11), the
equation of the isotherm, and the shape of the band at the inlet of the
column (boundary condition).

A more general form of the system, simpler to use, can be obtained. Let

F = uP (15)

Fis proportional to the local, apparent molar flux of gas per unit surface
area of the column cross section. Addition of Egs. (13) and (14) gives

oX oF
PEk = -3 (16)
Multiplication of Eq. (15) by X and subtraction from Eq. (13) gives
oxX , 11 ¢
‘Pa—t“ + k(1 — X)] = _FE; 17)

At this stage, the physical meaning of » can be assessed as follows:
taking k' = 0 (inert sample) in Eq. 17, one finds

ox _oX
a - Yz

From a known property of partial differentials, this can be rewritten as

(). -
ot x_“

The left-hand side of this equation can be identified with the apparent
speed of propagation of the constant molar fraction X.

Thus u is the local apparent transport velocity of an inert peak. It must
be emphasized that u is not solely determined by the flow characteristics,
as shown by Eq. (7), which means that deriving Eq. (8) directly by mass
balance would not have been correct because the right-hand side of Eq. (8)
has no real convective meaning.
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Determination of k'

If the gas phase is ideal, the partition equilibrium of A between the solu-
tions and the gas phase is given by the conventional thermodynamic
relationship

PX/PAO = )’AXAL =Y (18)

where P,° is the vapor pressure of the solute, y, is its activity coefficient
in the solution, X, % is its mole fraction in solution, and Y is its activity in
both phases. y, is a function of X, .

k' should be related to X in order for the system of Egs. (2), (16), (17),
and (11) to be self-consistent. An analytical explicit relationship is pos-
sible only if y, is constant (linear isotherm). Otherwise, even the simplest
conventional relationship between y, and X, is too complex to allow the
derivation of an explicit relationship, and only a numerical solution is
possible.

Combination of Eqs. (11), (12), and (18) gives

_ RT on,~  RT én\t 19)
T PVg X T POV, 0Y (

kl
The number of mole of solute in the solution is

L_m X\
WM T X (20)

where m; and M are the mass of stationary phase in the column and its
molecular weight, respectively. Differentiation of Eq. (20) and its combina-
tion with Eq. (19) gives

RT my 1 dx,t

k POV M.( = X, D)2 dy

20

This equation is similar to the one used by Helflerich (7) although the
effects of the pressure gradient have been neglected in his work. This was
a satisfactory approximation because Helfferich was interested in ion-
exchange chromatography, where the pressure effects on compressibility
and the solubility of liquids are indeed negligible, but this would not be
acceptable in gas chromatography.

It should also be noted that Eq. (21) is valid only for an ideal gas phase.
If it is not the case, a correct expression can be derived from Eq. (11) if
the function n,X(P, n,%) is known.
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Differentiation of Eq. (18) and its combination with Eq. (21) gives
A 1 1

K =k T3 K0 In o X L (T = X0 (22
where
RT my
ko = 5o T 23
0 PAO,y VG ML ( )

is the conventional value of the column capacity factor at zero concentra-
tion and y,® is the activity coefficient at infinite dilution.

Properties of k’

It is clear from Eq. (22) that k, is the limit of k' when X,* becomes
infinitely small.

Equation (21) also shows that the variation of k' with X" results from
the superposition of two effects, the isotherm effect or deviation from
Henry’s law, which is accounted for by the differential term

dX,Ljdy

and the effect of the variation of the volume of the solution, which intro-
duces the term 1/(1 — X, 5%,

This last effect is important since, when the volume of solution increases
as the solute concentration increases, a given change in the intermolecular
forces per unit volume (dX,L/dY) is obtained only if a larger number of
solute molecules is dissolved.

We shall now study the variations of k' near X,* = 0 (dilute solution).
The variations of 1/k’ with X, * is represented by the variations of

dY

A=m(1

- X (24)

Differentiation of Eq. (24) gives
A= (1= X500 - X, - 2Y) (25)

Y’ is always larger than 0.5 if the stationary phase is not a polymeric
material (26). Y” may be positive and is generally smaller than unity.
Consequently, A’ is most often negative and k' increases with increasing
X,F(and X). The result is the same if the stationary phase is a polymer. To
show this, a relationship similar to Eq. (22) using the volume fraction ¢,*
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instead of the mole fraction is derived. In fact, if y, is considered as a
function of ¢k, this equation is obtained by replacing X,* in Eq. (22) by
¢ L. The variations of 1/k’ with ¢,* thus depend on the sign of

A= (1= ¢ = ¢4 = 2Y) (26)

where Y is now a function of ¢,. It is shown in thermodynamics that for
solutions having the same dissolution enthalpy, the derivatives 3Y/0¢ "
and 82Y/(0¢,")?, when the solute and solvent molar volumes are very
different, are nearly equal to the derivatives dY/dX,* and d?Y/(dX,")*
when solute and solvent molar volumes are similar,

So in gas-liquid chromatography, where k' is an increasing function of
X, the large concentrations will seem to be retained more than the low
concentrations, resulting in a leading peak with a very sharp tail when the
isotherm effect is important. The isotherm effect and the sorption effect
are then antagonistic. '

This interesting fact can be used to find an optimum temperature in
preparative gas-liquid chromatography or to measure the isotherm curva-
ture (PLT method) (2).

This can be illustrated in the special case where Henry's law remains
valid in a large range of concentrations. Then

Ya = Ya© = constant 27
and
k' =k ’——5—51 (28)
T - X5
or
1
k' = k' 29)

l - 55—
Ppva

Equation (29) shows that the usual statement that k' may increase or
decrease with increasing X and, accordingly, that the peak will have a rear
or frontal discontinuity is wrong, as was noted by Stock (27). k' increases
with increasing X whatever the activity coefficient of A in the solution,
except, perhaps, for solutes with cxtremely unusual thermodynamic
properties, but we have not found an example of this.

The situation is different in gas-solid chromatography because the
curvature of the isotherm in the low concentration range is much larger.
In most cases, such as for a Langmuir isotherm, k'’ will decrease with
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increasing X, and the sorption and isotherm effects will act in the same
direction.

It should be noted, too, that k' is a function of the local pressure P,
although this is not explicit in Eq. (22), because an analytical expression
of k’ can be given only as a function of X,,“. But X,"is a function of Y and
consequently of PX, through the equation of the isotherm (Eq. 18). Thus
k' increases with P at constant X, which is the mathematical translation
of the well-known fact that the solubility of a vapor increases with its
partial pressure in the gas phase.

Equation (22) shows that k' can be considered as a constant only under
conditions in which X,“ is very small. From Eq. (18), this is possible only
if X is very small, which is the usual field of analytical applications, or if
one of the two conditions is satisfied:

P°>»P

or
ya > 1 (30)

In both cases the corres,'wpding compound is weakly retained, and this
observation is of limited uise in practice.

Maximum Range of Concentration in Preparative Gas Chromato-
graphy

It has been shown that practically the most important source of limita-
tion of the partial pressure of the sample at injection is overflooding of the
column by the solution of sample in the stationary phase (2) due to swelling
of the solution outside the porous particles. In practice this prevents to
use partial pressures larger than some fraction of the inlet pressure (/15);
this effect is quite general.

There is another source of limitation which might be important in par-
ticular cases, especially when exotic stationary phases are used for their
unusual specificity. Equation (21) shows that k' becomes infinite if dY/dX "
= 0, which is the situation arising whenever there is separation of the solu-
tions by demixing into two phases of the solution of Compound A in
the stationary phase. In this case the two solutions are in epuilibrium
with a gas phase of well-defined composition. No separation can be
achieved under such circumstances because chromatography proceeds
only as long as there is a well-defined relationship between the composi-
tion of the gas phase and the overall composition of the liquid phase.
When there is separation, the composition of each phase is constant, and
only the ratio of the amounts of the two phases changes.



14:18 25 January 2011

Downl oaded At:

264 VALENTIN AND GUIOCHON

This limitation of the partial pressure of the sample at injection, which
apparently has not yet been observed, illustrates the analogy beiween
chromatography and extractive distillation when the same limit is observed.

SYSTEM OF EQUATIONS FOR THE PROPAGATION OF
DISCONTINUITIES

The equations derived above are not valid for a concentration dis-
continuity if one occurs in the signal. To derive the equations of the
propagation of such a discontinuity, the mass balance of Solute A is
written for an infinitely small volume of the column which includes the
discontinuity (9, 17, 18, 28).

In the section on general assumptions we explained that we assumed

‘that the pressure profile is not modified during the elution of a large

concentration band and that it remains the same as the one given by Eq.
(2) and derived from Darcy’s law:
opP
U= —Wb—z' (31)
where w is a proportionality constant.

Equation (31) allows discontinuities of the gas flow velocity with a
continuous pressure which may be differentiated at any point of the
column.

From a theoretical and experimental study of pressure fluctuations,
Haarhoff (/6) has, during the elution of large concentration bands, reached
conclusions opposite to those of a paper by Scott (29), i.e., that there is
no pressure discontinuity. It seems certain that this is a good approxima-
tion of the experimental facts.

Mass Balance Equations

Let V,, be the migration rate of a discontinuity which separates the
column between two volumes, the downstream one, in which all para-
meters are denoted by the subscript 1, and the upstream one, for the
parameters of which the subscript 2 is used (cf. Fig. 3). The solute mass
balance gives

- V12[(”AIG - ”AZG) + (”A,L - ”AZL)] = "(”1”,«.,“ - ”2”,«,6) (32)

Since the carrier gas is ideal, Eq. (32) may be written

1 L
—Vu[xl (1 + ’%) - X2<] + ”‘z)] = —uX, + 1,X, (33
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F1G. 3. Mass balance around a shock wave #, and u, are the speed of the gas

phase upstream and downstream, respectively, of the discontinuity. Due to

the sorption effect, there is a discontinuity in the speed of the mole fraction

discontinuity. X; and X, are the mole fractions in the gas phase, and V,, =dz/d¢
is the apparent migration rate of the discontinuity.

with X, = X, € and X, = X%, analogous to Eq. (12).
Let

n, b
ki =X, % (34
N4,
k, is the retardation factor downstream from the discontinuity, with its
analog k, upstream.
The propagation rate of the discontinuity is then described by the mass
balance equation for the solute, which becomes

VX, — Xy + ky — k) = —u X; + u,X, (35)

and the mass balance equation for the carrier gas, which is obtained from
Eq. (35) where k, = k, = 0, and replacing X, by 1 — X, and X, by
1 - Xz:

V(X — X)) = —u,(1 = X)) + u,(1 — X) (36)

Equations (35) and (36) can be rearranged by elimination of either u,
or u,:
U, Uy

V12= = (37)
kl "‘kz kl —kz
Pty —x, 1 —%) 1+y—(-X)

The retardation factor is given by Eq. (34). We shall now study this
factor.
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Determination of the Retardation Factor

A relationship can be derived between k, (or k,) and the column capacity
factor k’. From Eq. (34):

L X na,© F, L X4 d L
kl _ XlnAl(; — |Gj‘ < Na, > dn = j\ (a::16> ax (38)
p 1 p

nm nA1 0 OI‘IA,G 0
Combination with Eq. (11) gives
X1
k, = j k' dX 39)

0

Integration of Eq. (22), or combination of Egs. (12), (20), (23), and (34)
gives

(40)

Equations (37) and (40) permit the numerical calculation of the propaga-
tion of discontinuities in any case.

Boundary Conditions

To achieve a complete definition of the problem, the boundary con-
ditions should be given for the integration of the system of equations.
These boundary conditions deal with the carrier gas flow and the band
injection.

There are two ways of defining the flow rate. First, give the inlet and
outlet pressures which correspond experimentally to a control of the inlet
pressure [P(z = 0, t) = P|]; second, give the inlet flow rate and the outlet
pressure which corresponds to a control of the carrier gas flow rate
[F(O, t) = F, = constant]. The outlet pressure remains constant in both
cases [P(L, t) = P,).

These two conditions are equivalent if we assume that the pressure
profile does not change during the elution of a peak; then Darcy’s law
relates the inlet and outlet pressures to the flow rate. We shall use the sec-
ond conditions [F(0, 1) = Fy; P(L, t) = P,) since we have chosen F as
our main variable.

The boundary conditions regarding the mole fraction are those of elu-
tion chromatography:

=0 X(Z, 0) =0
0<t<é X001 = Xt (41
t> ¢ X©0,1)=0
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and corresponds to the injection of a band profile which is determined
by the variation of the mole fraction X, during time £.

CONCLUSION

We have designed a model of quasi-ideal chromatography to study the
effects of large concentration on the deformation and broadening of bands
in gas chromatography, with the basic assumptions that the gas and liquid
phases are always in equilibrium and that the pressure profile is not
changed during the elution of a zone. This model is described by a set of
partial differential equations, algebraic equations, and boundary condi-
tions which are summarized in Table 1.

This system has no analytical solution. Furthermore, the coefficients of
the partial differential equations are functions of the local pressure and
consequently depend on the abscissa, so the method of characteristics
which is valid for a pressure constant in the whole column (9, 12, 18),
cannot be applied without approximations. This method has been very

TABLE 1

Mathematical Translation of the Quasi-Ideal Model of Gas Chromatography
at Finite Concentration

F, X continuous F, X discontinuous
Pu rra - x = —FX V) = 4y
6/ oz 1+k2“—k1(1__X)
X, — X, 2
pip o OF Vir A
ot oz IJ'_kzﬂk.(l_x)
T X_z X, 1
, ; YA® 1 1 TS, ¥
k= k' A k= k A Ya At
7 XALd;;ml —X\0? R N P A
A

kz — k’o PAO}'A(xj XA2L
P T T - Xt

P= JP,Z - {(plz — Py?) (pressure profile)
Pa?
P

7a = ya(Xa")  (isotherm)
Boundary conditions: (0, t) = u,
=0 X(z,00=0
0<tr<{ X0, 1) = X(t)
t>¢ X@©0,1)=0

X = X ya
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useful for solving the simpler problem in which the pressure is constant
all along the column, for calculating the peak profiles during the elution
of bands of compounds with linear isotherms (cf. Eqs. 27-29), and for
studying their deformation (/7).

The assumption of a negligible pressure gradient is not very realistic,
however, because relatively fine particles have to be used to pack the
columns to enhance the kinetics of mass transfer, and this results in pres-
sure drops in excess of 1 atm. Experiments show that such pressure gra-
dients have a strong influence on the band shape and thus should be taken
into account (15).

We shall study the solution of the system when the pressure gradient is
different from zero in another work (30).
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