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Propagation of Signals of Finite Concentration in Gas 
Chromatography. 1. The Quasi-Ideal Model 

PATRICK VALENTIN 

69 SOLAIZE, FRANCE 

GEORGES GUIOCHON 

CENTRE DE RECHERCHE3 ELF 

LABORATOIRE DE CHIMIE ANALYTIQUE PHYSIQUE 
ECOLE POLYTECHNIQIJE PARIS 58ME, FRANCE 

Abstract 

A general system of partial differential equations describing the propagation 
of signals of finite concentrations in a chromatographic column is derived. 
These equations are related to the mass-balance equations for the solutes and 
the carrier gas. The model used assumes that there is no  temperature or pressure 
variation at any point in the column when the signal is eluted, and that the 
equilibrium between stationary and mobile phases is instantaneous. It is 
shown that this model, which leads t o  a tractable set of equations, is generally 
valid. The solution of this system of equations gives new insight into the 
phenomena which are responsible for the peak deformations and broadening 
in preparative scale chromatography. 

INTRODUCTION 

The simplifying assumptions made in linear chromatography, which 
permit description of the propagation of the conventional analytical peaks 
at zero concentration in order to account for their usually Gaussian shape 
and to relate the peak broadening effects to the experimental parameters, 
are no longer valid when the concentration of the solute in the mobile 
phase becomes large (I). 
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146 VALENTIN AND GUIOCHON 

In a later work we shall show how to calculate the concentration range 
in which the assumptions of zero concentration chromatography cease to 
be valid and how to account for the peak deformation and the change in 
the retention time observed in this range (2). In this work we derive and 
discuss a general system of equations which could account for the im- 
portant deformations which occur when a signal of finite concentration of 
any shape is eluted throughout a chromatographic column. 

This problem has been studied and discussed many times (3-7), but the 
results previously published have not led to a general quantitative descrip- 
tion and discussion of the peak shapes observed in preparative gas chro- 
matography where solute concentrations have to be large. This situation 
has probably arisen because the point of view of most workers in this 
field was to consider the effects of large concentration as perturbations to 
the zero concentration model of propagation, or because of their failure to 
realize that the effects of diffusion or mass-transfer kinetics are second 
order compared to the effects originating in the large concentration of 
solute in the mobile and stationary phases. These are actually first-order 
effects, as is dcmonstrated by the fact that the coefficients of the mass- 
balance equations depend on the concentrations. This is the translation in 
mathematical terms of the influence of concentrations on flow rate (the 
sorption effect, modifying the overall mass balance in the gas phase) and 
on the equilibrium constant of dissolution or adsorption (the isotherm 
effect, modifying the mass balance of the solute). Both effects are complex 
functions of the pressure gradient in the column in gas chromatography, 
and should be accounted for. 

A very broad and deep treatment of the general chromatographic prob- 
lem at finite concentration has recently been published by Helfferich and 
Klein (8).  They covered the field excellently. Many specific cases, however, 
are not or cannot be solved by their approach, and the problem studied 
here, the propagation of a one-solute band at finite concentration with a 
non linear isotherm and a large sorption effect, bclongs to that group, 
although it is a special case of multicomponent chromatography. Un- 
fortunately, the hodographic transform If, used by Helfferich and Klein 
(8), which greatly simplifies the solution of the system of equations de- 
scribing the propagation and separation of a multicomponent band when 
the partition coefficients are not independent, is useful only for linear or 
Langmuir-type isotherms. In the more general case the H-transform can- 
not be used and one should rely on the characteristics theory as described 
by Jacob (9) or more recently by Aris and Amundson (10). 

Furthermore, when the mobile phase is a gas, the sorption effect be- 
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GAS CHROMATOGRAPHY. I 247 

comes very important and should be accounted for quantitatively. The 
mathematical difficulties of the problem are then much more important, 
and it was possible for Helfferich and Klein to explain only in broad 
terms how the sorption effect modifies the migration of bands when the 
isotherm is linear (Ref. 8, pp. 348-350). 

This work is thus an attempt to extend the previous work on multicom-. 
ponent chromatography (8) to the general case of gas chromatography 
where the sorption effect and the effect of a nonlinear isotherm do coexist 
and simultaneously influence the band migration, sometimes synergisti- 
cally, sometimes in an antagonistic way. This illustrates the major differ- 
ences between gas and liquid chromatography, the sorption effect and the 
mobile phase compressibility being negligible in this later case. 

Finally, we have chosen to put the main emphasis on the study of the 
stability and transformation of shocks or discontinuities as a means of 
following the change of peaks shape during their migration. The cor- 
responding stability diagram discussed in this work can be considered as 
the counterpart of the composition grids of Helfferich (8) which permits 
the study of the transformation of the continuous part of the signal. 

The rigorous mathematical formulation of the problem would be pos- 
sible although many difficulties would arise in the significance or even 
definition of some kinetics parameters. It is well known that a complete 
solution of this problem at the analytical level has not yet been given, 
although most of the phenomena seem to be understood and a satisfactory 
description of the experimental results has been achieved ( I ) .  The situation 
is much more complex when the concentration is finite, and before trying 
to account for the kinetics effects in details, it seemed to us interesting to 
study quantitatively the first-order effects, and to determine the degree 
to which they account for the deformation of the peaks which are ob- 
served at large concentrations and which cannot be accounted for in  
kinetic terms only. The complete system of equations is not mathematically 
tractable. A considerable simplification occurs if the broadening effects of 
mass-transfer kinetics are neglected, which is another reason to consider 
only the first-order terms. Finally, the justification of this assumption 
lies in the high rate of mass transfers under the experimental conditions 
prevailing in chromatography, so that the first-order effects become the 
most important at moderate concentrations, as will be shown (2), the 
kinetics effects taking place only to dampen the very steep concentration 
gradients which would otherwise occur, and thus to “soften the angles.” 

Such a physicochemical model would be useless if it had no predictive 
value. Accounting satisfactorily for the first-order effects of concentration 
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248 VALENTIN AND GUIOCHON 

in chromatography at finite concentration will lead to a new, more ac- 
curate, general method of determining dissolution or adsorption isotherms 
(2). It will give a quantitative method to optimize the productivity of indus- 
trial prep-scale chromatographic units ( I I ) ,  and it will also allow us the 
estimation of the range of concentration in which the zero-concentration 
convcntional theory of chromatography is valid, and how deviations from 
the ideal model can lead to effects which are well known by the analysts 
but have not yet been explained. 

Finally, the justification of our model lies in its success, its mathematical 
tractability (12), the excellent agreement between the concentration 
profiles obtained from computers and from chromatographs (II), and in 
its other applications (2). 

We shall first describe the assumptions made in deriving the systems of 
equations and discuss their justification as well as their conditions and 
range of validity. Then we shall derive the equations which describe the 
propagation of continuous parts and of discontinuities. 

A MODEL OF PROPAGATION OF SIGNALS OF FINITE 
CONCENTRATION 

Some of the assumptions made in this model have been suggested in 
previous work (3-7). The most important new characteristics of our model 
are the combination of: 

(1) The explicit use of thermodynamic data at equilibrium in the equa- 
tions. This is especially important in the study of the conditions of stability 
of the discontinuities and of the temperature influence on these conditions. 

(2) The influence of the pressure gradient on the migration and de- 
formation of peaks is introduced and accounted for. 

(3) The model makes use of the existence of the stagnant mobile phase 
(2) ,  the fraction of the mobile phase which is inside the support particles. 
This is important because it allows an accurate definition and choice of 
the velocities which are involved in the equations. 

(4) A double set of equations of mass balance because of the existence 
of discontinuous solutions to the propagation problem. 

General Assumptions 

between the two phases, and the temperature. 
These assumptions regard the behavior of the gas phase, the equilibrium 

(1) The gas phase behavior remains ideal both for its compressibility 
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and for its mixing properties. In addition, the flow rate is always deter- 
mined by Darcy’s law (13) applied to the pure carrier gas. The pressure 
profile is the same whether the column is in steady conditions or during the 
elution of a large concentration zone. 

(2) The mobile and the stationary phases are always in equilibrium. 
Furthermore, the rate of the axial diffusion is zero and the rate of the 
radial diffusion is infinite, so the composition of both the gas and liquid 
phases are constant in a column cross-section. 

(3) The column is isotherm. The variation of local temperature when 
the zone is eluted is neglected. 

We shall now discuss the reasons, the range of validity, and the im- 
portance of the assumptions before proceeding to the derivation of the 
equations. 

Ideal Behavior of the Gas Phase 

The carrier gas has already been assumed to behave ideally in chromato- 
graphy. It has been shown that even for carbon dioxide this assumption is 
realistic (14), so it seems to be quite valid in our problem, too, especially 
if it is taken into account that the partial pressure of the solute does not 
exceed 0.3 bar at the injection in practice (15) and that this pressure is 
reduced as the band spreads. Further corrections should probably be 
applied, however, for the contribution of gas phase nonideality to  the 
equilibrium constant between both phases. 

Flow Rate and Pressure ProJiles 

It is easy to illustrate the influence of the pressure gradient in the column 
as follows. If a mixture of carrier gas and solute vapor of constant con- 
centration is steadily fed into a column, as in frontal analysis, an equili- 
brium is eventually reached between the two phases and there is no more 
macroscopic exchange of solute between these phases. The situation is 
then identical to the expansion of the mixture in a tube, from column inlet 
to outlet pressure, with no change of composition whatsoever. The partial 
pressure of the solute is proportional to the local pressure, and accord- 
ingly its local concentration in the stationary phase decreases in propor- 
tion to  this pressure. In elution chromatography for a single compound, 
the partial pressure and concentration can only be lower than the cor- 
responding values in this steady state, and this has important consequences. 

The retention of a compound is determined by the ratio between the 
number of sorbed molecules and the number of molecules in the gas phase 
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UO VALENTIN AND GUIOCHON 

at equilibrium in the local conditions. When the isotherm is not linear, 
this pressure variation directly affects the retention by changing the 
equilibrium constant. Jn addition, whether the isotherm is linear or not, 
therc is a second effect of decompression on the gas velocity. 

It is necessary to include the pressure gradient in the equations. Un- 
fortunately, it is not possible to do so by referring to some averagc pres- 
sure, as we shall show later that the effect of the pressure gradient is a 
function of the isotherm itself (2). It is not possible to solve the equations 
derived without some simplification. This is the reason why we shall as- 
sume with Haarhoff (16) that the pressure profile is unchanged by the 
elution of a large concentration signal. This assumption is justified by the 
observation that the local pressure does not vary by more than a few 
millibars during the elution of a large concentration band (16). Mathe- 
matically, this means that 

apiat = o (1) 

whereas ap/az and 2uldz arc not zero. The pressure profile is given by 
integration of Darcy’s law: 

where P(z)  is the local pressure, Pi and Po the inlet and outlet pressures, 
and I, the column length (13). 

We shall also neglect the influence of the solute concentration on the 
viscosity of the mobile phase. This assumption is valid in elution chromato- 
graphy where the bands are relatively narrow compared to the column 
length and the solute concentrations are smaller, but some correction 
should probably be introduced if the model is to be applied to frontal 
analysis. 

Equilibrium between the Two Phases 

It is presently impossible to  solve the equations of a model which as- 
sumes a finite rate of mass transfer between the two phases. The simpler 
problem already discussed here is very difficult to solve, and extensive 
computer time is necessary to obtain actual concentration profiles for given 
experimental conditions ( I  I ) .  Furthermore, becausc the kinetics of mass 
transfer is not well understood under the zero concentration assumption, 
where it plays a major role, it would not be easy to express it mathemati- 
cally for finite concentrations [for example, should the coupled theory ( I )  
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GAS CHROMATOGRAPHY. I 251 

be generalized and how?] not even to speak of the problem of making a 
reasonable estimation of the rate constants necessary for practical ap- 
plications. 

The equilibrium assumption is therefore necessary in order to have a 
solvable system. Its justification arises from the fact that the effects of 
diffusion and other kinetic phenomena are second-order sources of band 
broadening compared to those originating from the finite concentration, 
as explained above; i.e., the coefficients of the mass-balance equations are 
function of the concentrations, and thus the first partial derivatives dis- 
appear at zero concentration, whereas the equilibrium assumption results, 
in mathematical terms, in neglecting the second partial derivatives in these 
equations. 

This has a very important consequence which has not been fully realized 
yet, although its existence was known before (8).  It has been understood 
and used systematically by Jacob for the first time (9).  This is the appear- 
ence and propagation of stable discontinuities (17). It is difficult to 
explain with accuracy this effect which originates from some special 
properties of the system of equations to which our model leads but is not 
actually observed, although the very asymmetrical peak profiles observed 
[for example, with the early peaks in  capillary columns (very sharp front 
and “normal” tail) or with overloaded columns (very sharp front or 
tail)] illustrate pretty well the situation for the analysts (cf. Fig. 1). The 
system of equations we shall describe has mathematical properties similar 
to those of the systems describing two much more widely known phe- 
nomena which, by analogy, may also illustrate the situation, although 

FIG. 1.  Origin of discontinuities of concentration in conditions in which the 
sorption effect, for example, is important. The front of a band initially Gaussian 
(a) of large concentrations becomes steeper and steeper (b) until a vertical 
inflection tangent appears (c) which is the origin of a concentration discontinuity 

(d) .  A peak profile, such as e ,  would be physical nonsense. 
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152 VALENTIN AND GUIOCHON 

care should be taken not to draw the analogy too far. These are the shock 
waves and the rolling sea waves. A shock wave is a pressure discontinuity 
which propagates faster than sound ; the local compression heats the oscil- 
lating medium, and so the waves which would tend to propagate faster 
than the shock wave enter a region of space where air is cold and are de- 
layed whereas the waves which would tend to propagate slower than the 
shock wave are in a hot region of space where their speed becomes faster 
and they join up with the shock, hence its stability. Mathematically, the 
conditions of stability of these discontinuities are similar; they correspond 
to the conditions of nonexistence of the characteristics of the system of 
equations (8, 12, 17, 18). The problem of the stability of the concentration 
discontinuities in finite concentration chromatography can be illustrated 
by the rolling waves. 

In some circumstances, for example, near the seashore, waves develop a 
rolling form. This phenomenon, which would be impossible if gravity was 
stronger, arises because, in the conditions prevailing near the beach, the 
equation describing the continuous profile of the wave propagating along 
the axis Oz yields three values of the water height in some range of z values. 

The system of equations describing the propagation of a concentration 
profile in chromatography has similar properties, as originally shown by 
De Vault (19)  for liquid chromatography (cf. Fig. 1). Clearly however, 
such a shape is impossible for a concentration profile. De Vault has 
suggested a solution: to replace the impossible part of the continuous 
profile obtained as a solution of the standard equations by a vertical line 
which conserves the profile area (19), as shown Fig. 1. A more rigorous 
solution, more general and satisfactory from the point of view of the 
physical chemist, is to consider that concentration discontinuities are pos- 
sible parts of the peak profile and to write the mass-balance equations 
around them to determine their propagation rate. 

A discontinuity appears when an inflection tangent to  the profile be- 
comes vertical. Then the discontinuity builds up at the expense of the 
neighboring continuous profiles until it eventually reduces and disap- 
pears if the column is long enough. Because chromatography is essentially 
a dilution process, the conditions of zero concentration will always prevail 
at the end and the peak will become Gaussian. A discontinuity can 
reduce progressively to an inflection point with the vertical tangent and 
disappear. In some cases it can also collapse as a whole. 

It might be argued that discontinuities are mere artifacts introduced 
only by our unability to tackle them with a more accurate model which 
incorporates kinetic effects. Although it is true that diffusion relaxes the 
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infinite concentration gradients corresponding to discontinuities, the 
fundamental effects from which they originate are real. The very steep 
peak fronts or tails correspond to conditions in which the first-order and 
the second-order effects compensate, and in which the trend to a steeper 
profile because of the large concentration effect is compensated for by the 
dampening effects of diffusion which smoothe the profiles. It is known 
that in such conditions numerical solutions to systems of partial differ- 
ential equations have a strong trend toward divergence. So, as long as the 
peak profile cannot be described by an analytical solution, the study of 
discontinuities properties and propagation is necessary. 

It can also be shown mathematically that (20) in the general case where 
first-order and dispersional effects arise together, some parts of the peak 
propagate merely by translation, with no change in shape. When disper- 
sional effects tend to zero, these nondeforming parts tend to  become 
vertical. Thus discontinuities in the first-order, nondispersional model 
can be considered as a limiting case of the general model and should not 
be regarded as an “artifact.” 

In summary, our model will require the derivation of two systems of 
equations, one determining the propagation of the continuous part of the 
concentration profile and the other determining the propagation of the 
discontinuities. The study of the interaction between the two systems, Le., 
the appearance and disappearance of discontinuities during the propaga- 
tion of a band, will be an important part of the resolution of the problem. 

Radial Equilibrium 

The assumption of a zero radial concentration gradient through a chro- 
matographic column is indeed a consequence of the more general equilib- 
rium assumption. Most of the peak broadening in prep-scale columns at 
very low sample size, when second-order effects are predominant, origi- 
nates in the radial heterogeneity of the column packing (21). More 
recently, however, columns of large diameter ( 5  in. to 1 ft) have been 
reproducibly packed with an efficiency at zero concentration which is 
of the same order of magnitude as the efficiency of analytical columns 
(IS), thus making this assumption quite realistic. 

Isothermal Elution of Large Concentration Bands 

The elution of a chromatographic band generates a temperature profile 
which is a function of the concentration profile or, more precisely, of its 
derivative (although the temperature effect is not proportional to the 
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derivative of the concentration profile). This effect has been studied by 
Bayer and Hupe and used as the basic principle of a new detector (22). 
More recently, Hupe has studied the temperature signal which appears 
during the elution of a large concentration band and shown that tem- 
perature variations can be as large as 15°C (23). This effect, however, is 
very much dependent on the thermal conductivity of the packing, and it is 
well known that the thermal conductivity of powders depends greatly 
on the nature of the surrounding gas. When nitrogen, which was used as 
the carrier gas by Hupe, is replaced by helium, which is much more 
interesting as a carrier gas in prep-scale gas chromatography because it 
leads to larger productivity ( 1 9 ,  we observed on a 5 in. diameter column a 
much smaller effect : 1 or 2 "C only. 

A small correction might be necessary for larger diameter columns, 
but this can be treated as a small perturbation to the isothermal propaga- 
tion. 

Injluence of Mass Transfer on Band Propagataion 

The material balance equations are usually derived in chemical engineer- 
ing with the assumption that the gas velocity throughout the column is 
not affected by mass transfer bctwccn stationary and mobile phases. This 
approximation is justified when these mass transfers are stationary. It 
would not be valid in chromatography where these transfers are in a 
transitory state. 

The influence of mass transfers on the propagation, the sorption eflect 
(24), is simple to explain. The carrier gas vclocity is larger than the migra- 
tion rate of a band. Lct us consider the volume element of a pure carrier 
gas which arrives in a region of the column where the solute concentration 
is not zero. Part of thc solute dissolved in the stationary phasc vaporizes 
into the gas phase; its partial molar volume in the gas phase is about 200 
times larger than in the solution. The migration rate of the back border 
of the carrier gas volume is dctermined by the boundary conditions of the 
system. Thus the front border accelerates bccause of this increase in the 
gas volume (the local pressure does not change appreciably). This explains 
why, during the migration of a band in certain experimental conditions, 
the large concentrations tend to migrate faster than the lower concentra- 
tions. Because it is impossible for the larger concentrations to leave before 
the lower ones, the peak profile becomes steeper and a stable discontinuity 
builds up. 

As the peak migration causes a local increase in the gas flow velocity, 
it is no longer possible to describe the signal propagation by one mass 
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balance equation because this velocity becomes a variable. Such an equa- 
tion should be written explicitly for the carrier gas and each solute. The 
solutions of the system will give the concentrations and the velocity 
profile at any time. 

The fact that the concentration profiles of two solutes and the velocity 
profile are given by one common system of equations demonstrates the 
interaction of the bands of two solutes, at least as long as they are not 
resolved from each other, when the concentration is large and it is impos- 
sible to consider these different phenomena separately (25).  

Another important consequence of this interaction between concentra- 
tion and flow velocity deals with the relationship between retention time 
and retention volume. Because of the sorption effect, the ratio of the reten- 
tion volume to the retention time for a given mole fraction X is not the 
outlet carrier gas flow rate, but the actual local flow rate, with the sorption 
effect included, or its average along the column if the pressure gradient is 
not negligible. As in most cases the retention time is the observed data, 
the retention volume, which cannot be derived simply from t, anymore, 
loses most of its interest in large concentration chromatography. The 
retention time, which is easy to measure, has the further advantage of being 
identical with the residence time as defined in reactor theory in chemical 
engineering. 

Although in practice the sorption effect is important only in gas chro- 
matography, it is general to all types of chromatography. The dissolution 
of the solute in the stationary phase results in an increase of the volume 
of this phase and a decrease in the volume of the stagnant mobile phase 
(2), which in turn results in an increase in the apparent rate of migration 
of the solute. The adsorption itself results in a decrease in the local velocity 
of the mobile solution. Both of these effects compensate exactly only if the 
partial molar volumes of the solute are the same in the two phases, other- 
wise the sorption effect is a function of the difference between these two 
partial molar volumes. Thus the sorption effect is really important only in  
gas chromatography where the partial molar volume in the gas phase is 
about 200 times larger than the partial molar volume of the solute in the 
solution (or of the adsorbate). One could add that the sorption effect is 
not restricted to chromatography but is present in any separation process 
where there is any “radial” mass transfer occurring in a longitudinal flux, 
such as in distillation and absorption. 

We shall now proceed successively to the derivation of the systems of 
equations describing the propagation of continuous concentration profiles 
and of concentration discontinuities. 
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256 VALENTIN AND GUIOCHON 

SYSTEM OF EQUATIONS FOR THE PROPAGATION OF 
CO NTI N U 0 U S  SI G N ALS 

We shall assume in this section that all functions are continuous and 
can be differentiated. This assumption is a very important one and must 
be made because we shall show that we must also consider discontinuous 
parts in the signal and that these parts obey quite different equations. This 
is an example of cases where rigorous mathematics is very important in 
physical chemistry. 

We shall use the same packing model as the one used to derive a general 
theory of chromatography at zero concentration and to unify the theories 
of packed and capillary columns (2). This model distinguishes between 
two fractions of the mobile phase which act quite differently: the mobile 
fraction, which is outside the packing particle and possesses all the kinetic 
moment, and the stagnant fraction, which impregnates the porous par- 
ticles, is motionless, and is in direct contact with the stationary phase 
(cf. Fig. 2). Mass transfer between the mobile fraction (which is the only 
one available for convection) and the stationary phase takes place through 
the stagnant fraction. The equilibrium constant between these mobile and 
stagnant phases is unity. An important advantage of this model is to clar- 
ify definitions and the choice of the various velocities and the average 
velocities (2). 

Mass Balance of the Solute 

Let nAm be the number of mole of Solute A in the mobile fraction of the 
gas phase, n: the number of mole in the stagnant fraction, nAL the number 

d 

h 

___t 

C 

a 

Fici. 2. Scheme of a gas-liquid chromatography column. (a) Solid support. 
(b) Stationary liquid phase. (c) Stagnant gas phase inside thc porous particles 

of support. (d )  Mobile gas phase, outside the support particles. 
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GAS CHROMATOGRAPHY. I 257 

of mole in the stationary phase, and 0, the cross-section average, inter- 
stitial gas velocity: 

Q a =-  
E,A (3) 

where Q is the local volume flow rate, A is the column cross-section area, 
and E, is the external porosity (related to the column permeability). VG is 
the total volume available to the gas phase in the column, and Ve is the 
volume available to the mobile fraction. V ,  is the extraparticle void volume 
of the column (V ,  = ceV,, where V,  is the total volume of the column, 
V, = A L ) .  

The mass balance for the solute during the time dt in a fraction of the 
column of length dz is 

because the contribution of diffusion to the mass flow is neglected. As the 
various phases are assumed to always be in equilibrium, the total number 
of solute moles in the gas phase, nAG, is 

(5 )  
VG 

nAG = nAm + n; = v, nAm 
since the equilibrium constant between the mobile and stagnant fractions 
of the gas phase is unity. Combination of Eqs. (4) and ( 5 )  gives 

We shall define a new term which has the dimensions of a velocity by 

We shall give the physical significance of u in the section entitled System of 
Equations. Taking into account this definition of u, we write Eq. (6) as 

anAG a(un*G) 
at aZ -(I + k') = -- 

with 
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258 VALENTIN AND GUIOCHON 

This definition of k' is justified because of its properties as we shall demon- 
strate. As discussed above, we shall assume that n," is a function of P and 
nAG only; not an explicit function of time and the abscissa (equilibrium as- 
sumption). We shall also assume that the local pressure is not a function of 
time. 

Then 

and 

k' as defined by Eq. (9) is a function of thc equilibrium isotherm of Solute 
A between the gas and stationary phases. This is a generalization of the 
conventional definition of the column capacity factor to the case of non- 
linear isotherms. We shall later study the properties of k' as defined by 
Eq. (11). 

It should be noted that this definition of k' is quite general and is not 
restricted to the ideal gas phase. In fact, when, as is done below, the gas 
phase is assumed to be ideal, thep subscript can be dropped and the partial 
differential Eq. (1 1) becomes a simple differential onc. 

In this case the equation of state of an ideal gas can be written 

where P is a function of z but not of 1. 
The mass-balance equation of the solute (cf. Eq. 8) then becomes 

Note that Pu is not constant in Eq. (13), as in analytical chromatography, 
sincc the solute vapor contributes appreciably to the local velocity. 

Mass Balance of the Carrier Gas 

Because the carrier gas is not dissolvcd in the stationary phasc, the 
mass balance of the carrier gas can be derived from Eq. (13) when X is 
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replaced by (1 - X )  and k' by 0: 

259 

(14) 

System of Equations 

There are three unknowns (u, P ,  X )  which are functions of two vari- 
ables ( z  and 1) .  The three partial differential equations are Eqs. (2), (13), 
and (14). A complete definition of the problem also involves Eq. (Il) ,  the 
equation of the isotherm, and the shape of the band at the inlet of the 
column (boundary condition). 

A more general form of the system, simpler to  use, can be obtained. Let 

F = UP (15) 

F is proportional to the local, apparent molar flux of gas per unit surface 
area of the column cross section. Addition of Eqs. (13) and (14) gives 

Multiplication of Eq. ( 1  5 )  by X and subtraction from Eq. ( 1  3) gives 

ax ax 
, P a t [ '  + k'(l - X ) ]  = - F -  a Z  

At this stage, the physical meaning of u can be assessed as follows: 
taking k' = 0 (inert sample) in Eq. 17, one finds 

ax ax 
at a Z  

- -u -  - -  

From a known property of partial differentials, this can be rewritten as 

The left-hand side of this equation can be identified with the apparent 
speed of propagation of the constant molar fraction X .  

Thus u is the local apparent transport velocity of an inert peak. It must 
be emphasized that u is not solely determined by the flow characteristics, 
as shown by Eq. (7), which means that deriving Eq. (8) directly by mass 
balance would not have been correct because the right-hand side of Eq. (8) 
has no real convective meaning. 
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260 VALENTIN AND GUIOCHON 

Determination of k' 

If the gas phase is ideal, the partition equilibrium of A between the solu- 
tions and the gas phase is given by the conventional thermodynamic 
relationship 

where PAo is the vapor pressure of the solute, is its activity coefficient 
in the solution, XAL is its mole fraction in solution, and Y is its activity in 
both phases. yA is a function of XAL.  

k' should be related to X in order for the system of Eqs. (2), (16), (17), 
and (1 1) to be self-consistent. An analytical explicit relationship is pos- 
sible only if yA is constant (linear isotherm). Otherwise, even the simplest 
conventional relationship between yA and XAL is too complex to allow the 
derivation of an explicit relationship, and only a numerical solution is 
possible. 

Combination of Eqs. (1 l), (12), and (18) gives 

The number of mole of solute in  the solution is 

where mL and ML are the mass of stationary phase in the column and its 
molecular weight, respectively. Differentiation of Eq. (20) and its combina- 
tion with Eq. (19) gives 

This equation is similar to the one used by Helfferich (7) although the 
effects of the pressure gradient have been neglected in his work. This was 
a satisfactory approximation because HellTerich was interested in ion- 
exchange chromatography, where the pressure effects on compressibility 
and the solubility of liquids are indeed negligible, but this would not be 
acceptable in gas chromatography. 

It should also be noted that Eq. (21) is valid only for an ideal gas phase. 
If it is not the case, a correct expression can be derived from Eq. (11) if 
the function nAL(P, nAG) is known. 
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Differentiation of Eq. (18) and its combination with Eq. (21) gives 

where 

is the conventional value of the column capacity factor at zero concentra- 
tion and yAm is the activity coefficient at infinite dilution. 

Properties of k' 
It is clear from Eq. (22) that ko' is the limit of k' when XAL becomes 

infinitely small. 
Equation (21) also shows that the variation of k' with XAL results from 

the superposition of two effects, the isotherm effect or deviation from 
Henry's law, which is accounted for by the differential term 

dxAL/d Y 

and the effect of the variation of the volume of the solution, which intro- 
duces the term 1/(1 - XAL)'. 

This last effect is important since, when the volume of solution increases 
as the solute concentration increases, a given change in the intermolecular 
forces per unit volume (dXAL/dY) is obtained only if a larger number of 
solute molecules is dissolved. 

We shall now study the variations of k' near XAL = 0 (dilute solution). 
The variations of Ilk' with XAL is represented by the variations of 

Differentiation of Eq. (24) gives 

A' = ( 1  - XAL)( Y"( 1 - X A ~ )  - 2 Y') (25) 

Y' is always larger than 0.5 if the stationary phase is not a polymeric 
material (26). Y" may be positive and is generally smaller than unity. 
Consequently, A' is most often negative and k' increases with increasing 
XAL (and X ) .  The result is the same if the stationary phase is a polymer. To 
show this, a relationship similar to Eq. (22) using the volume fraction 4aL 
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262 VALENTIN AND GUIOCHON 

instead of the mole fraction is derived. In fact, if y,, is considered as a 
function of $IAL, this equation is obtained by replacing XAL in Eq. (22) by 
$IAL. The variations of l/k’ with 4AL thus depend on the sign of 

A‘ = (1 - dAL)(y”(l - 4 ~ ~ )  - 2Y’) (26) 

where Y is now a function of dA. It is shown in thermodynamics that for 
solutions having the same dissolution enthalpy, the derivatives d Y/a$IAL 
and d’Y/(a4,L)2, when the solute and solvent molar volumes are very 
different, are nearly equal to the derivatives dY/dXAL and d 2  Y/(dXAL)’ 
when solute and solvent molar volumes are similar. 

So in gas-liquid chromatography, where k’ is an increasing function of 
X ,  the large concentrations will seem to be retained more than the low 
concentrations, resulting in a leading peak with a very sharp tail when the 
isotherm effect is important. The isotherm effect and the, sorption effect 
are then antagonistic. 

This interesting fact can be used to find an optimum temperature in 
preparative gas-liquid chromatography or to  measure the isotherm curva- 
ture (PLT method) (2).  

This can be illustrated in the special case where Henry’s law remains 
valid in a large range of concentrations. Then 

yA = yAm = constant (27) 

and 

or 

Equation (29) shows that the usual statement that k’ may increase or 
decrease with increasing Xand, accordingly, that the peak will have a rear 
or frontal discontinuity is wrong, as was noted by Stock (27). k‘ increases 
with increasing X whatever the activity coefficient of A in the solution, 
except, perhaps, for solutes with extremely unusual thermodynamic 
properties, but we have not found an example of this. 

The situation is different in gas-solid chromatography because the 
curvature of thc isotherm in the low concentration range is much larger. 
In most cases, such as for a Langmuir isotherm, k‘ will decrease with 
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increasing X ,  and the sorption and isotherm effects will act in the same 
direction. 

It should be noted, too, that k' is a function of the local pressure P, 
although this is not explicit in Eq. (22), because an analytical expression 
of k' can be given only as a function of XAL. But XAL is a function of Y and 
consequently of PX,  through the equation of the isotherm (Eq. 18). Thus 
k' increases with P at constant X ,  which is the mathematical translation 
of the well-known fact that the solubility of a vapor increases with its 
partial pressure in the gas phase. 

Equation (22) shows that k' can be considered as a constant only under 
conditions in which XAL is very small. From Eq. (18), this is possible only 
if X is very small, which is the usual field of analytical applications, or if 
one of the two conditions is satisfied: 

PAo >> P 
or 

YA >> (30) 
In both cases the corresepding compound is weakly retained, and this 
observation is of limited use in practice. 

Maximum Range of Concentration in Preparative Gas Chromato- 

It has been shown that practically the most important source of limita- 
tion of the partial pressure of the sample at injection is overflooding of the 
column by the solution of sample in the stationary phase (2) due to swelling 
of the solution outside the porous particles. In practice this prevents to 
use partial pressures larger than some fraction of the inlet pressure (15); 
this effect is quite general. 

There is another source of limitation which might be important in par- 
ticular cases, especially when exotic stationary phases are used for their 
unusual specificity. Equation (21) shows that k' becomes infinite if dY/dXAL 
= 0, which is the situation arising whenever there is separation of the solu- 
tions by demixing into two phases of the solution of Compound A in 
the stationary phase. In this case the two solutions are in  epuilibrium 
with a gas phase of well-defined composition. No separation can be 
achieved under such circumstances because chromatography proceeds 
only as long as there is a well-defined relationship between the composi- 
tion of the gas phase and the overall composition of the liquid phase, 
When there is separation, the composition of each phase is constant, and 
only the ratio of the amounts of the two phases changes. 

graphy 
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264 VALENTIN A N D  GUIOCHON 

This limitation of the partial pressure of the sample at injection, which 
apparently has not yet been observed, illustrates the analogy between 
chromatography and extractive distillation when the same limit is observed. 

SYSTEM OF EQUATIONS F O R  T H E  PROPAGATION OF 
DISCONTIN UlTlES 

The equations derived above are not valid for a concentration dis- 
continuity if one occurs in the signal. To derive the equations of the 
propagation of such a discontinuity, the mass balance of Solute A is 
written for an infinitely small volume of the column which includes the 
discontinuity (9, 17, 18, 28). 

I n  the section on general assumptions we explained that we assumed 
that the pressure profile is not modified during the elution of a large 
concentration band and that it remains the same as the one given by Eq. 
(2) and derived from Darcy's law: 

where w is a proportionality constant. 
Equation (31) allows discontinuities of the gas flow velocity with a 

continuous pressure which may be differentiated at any point of the 
column. 

From a theoretical and experimental study of pressure fluctuations, 
Haarhoff (16) has, during the elution of large concentration bands, reached 
conclusions opposite to those of a paper by Scott (29), i.e., that there is 
no pressure discontinuity. It seems certain that this is a good approxima- 
tion of the experimental facts. 

Mass Balance Equations 

Let V , 2  be the migration rate of a discontinuity which separates the 
column between two volumes, the downstream one, in which all para- 
meters are denoted by the subscript 1, and the upstream one, for the 
parameters of which the subscript 2 is used (cf. Fig. 3). The solute mass 
balance gives 

- v , 2  [ x, ( 1 +-7: " * I 1 * )  - x, ( 1 +--+ n A  ')I = - U , X ,  + UJ, (33) 
n A  I n A 2  
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FIG. 3. Mass balance around a shock wave uz and u, are the speed of the gas 
phase upstream and downstream, respectively, of the discontinuity. Due to 
the sorption effect, there is a discontinuity in the speed of the mole fraction 
discontinuity. XI and X ,  are the mole fractions in the gas phase, and V , ,  =dz/dt 

is the apparent migration rate of the discontinuity. 

with X I  = XA: and X ,  = XA:, analogous to Eq. (12). 
Let 

k, is the retardation factor downstream from the discontinuity, with its 
analog k, upstream. 

The propagation rate of the discontinuity is then described by the mass 
balance equation for the solute, which becomes 

-V,2(XI  - X2 + k, - kz) = - u I X ~  + ~2x2 (35) 
and the mass balance equation for the carrier gas, which is obtained from 
Eq. (35) where k, = k, = 0, and replacing X I  by 1 - X I  and X ,  by 
1 - x,: 

(36) - V , , ( X ,  - X,) = - - U I ( l  - X , )  + u,(l - X, )  

Equations (35) and (36) can be rearranged by elimination of either u,  
or u 2 :  

The retardation factor is given by Eq. (34). We shall now study this 
factor. 
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266 VALENTIN AND GUIOCHON 

Determination of the Retardation Factor 

factor k‘.  From Eq. (34): 
A relationship can be derived between k ,  (or k, )  and the column capacity 

k , = X & - -  , n - x~Gjo n ~ l G  (&)/n anAl = Jo (&)p anA1 dX (38) 
n A ~  n A ~  

Combination with Eq. (1 1) gives 
XI 

0 
k ,  = k ’ d X  (39) 

Integration of Eq. (22), or combination of Eqs. (12), (20), (23), and (34) 
gives 

Equations (37) and (40) permit the numerical calculation of the propaga- 
tion of discontinuities in any case. 

Boundary Conditions 

To achieve a complete definition of the problem, the boundary con- 
ditions should be given for the integration of the system of equations. 
These boundary conditions deal with the carrier gas flow and the band 
injection. 

There are two ways of defining the flow rate. First, give the inlet and 
outlet pressures which correspond experimentally to a control of the inlet 
pressure [P(z  = 0, t )  = Pi]; second, give the inlet flow rate and the outlet 
pressure which corresponds to a control of the carrier gas flow rate 
[F(O, t )  = Fo = constant]. The outlet pressure remains constant in both 
cases [P(L, t )  = Po] .  

These two conditions are equivalent if we assume that the pressure 
profile does not change during the elution of a peak; then Darcy’s law 
relates the inlet and outlet pressures to the flow rate. We shall use the sec- 
ond conditions [F(O, t )  = F,; P(L, t )  = Po] since we have chosen F as 
our main variable. 

The boundary conditions regarding the mole fraction arc those of elu- 
tion chromatography : 

t = O  X(2,  0) = 0 

0 < t 5 ( X ( 0 ,  t )  = XO(l) (41) 
X(0, t )  = 0 
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and corresponds to  the injection of a band profile which is determined 
by the variation of the mole fraction A’,, during time {. 

CONCLUSION 

We have designed a model of quasi-ideal chromatography to study the 
effects of large concentration on the deformation and broadening of bands 
in gas chromatography, with the basic assumptions that the gas and liquid 
phases are always in equilibrium and that the pressure profile is not 
changed during the elution of a zone. This model is described by a set of 
partial differential equations, algebraic equations, and boundary condi- 
tions which are summarized in Table 1 .  

This system has no analytical solution. Furthermore, the coefficients of 
the partial differential equations are functions of the local pressure and 
consequently depend on the abscissa, so the method of characteristics 
which is valid for a pressure constant in the whole column (9, 12, 181, 
cannot be applied without approximations. This method has been very 

TABLE 1 

Mathematical Translation of the Quasi-Ideal Model of Gas Chromatography 
at Finite Concentration 

F, X continuous F, X discontinuous 

2X P g [ l  + k’(1 - X)] = - F -  
at 2Z 

PA0yAm X A Z L  k2 = k‘o - P 1 - XA2t 

P = (pressure profile) 

YA = Y A ( X A ~ )  (isotherm) 
Boundary conditions: u(0, t )  f uo 

t 7 0 
0 < t I C 
f >  c 

X ( z ,  0)  sz 0 

X(0,  I )  = 0 
X(0, r )  = X(r)  
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268 VALENTIN AND GUIOCHON 

useful for solving the simpler problem in which the pressure is constant 
all along the column, for calculating the peak profiles during the elution 
of bands of compounds with linear isotherms (cf. Eqs. 27-29), and for 
studying their deformation (IZ). 

The assumption of a negligible pressure gradient is not very realistic, 
however, because relatively fine particles have to be used to pack the 
columns to enhance the kinetics of mass transfer, and this results in pres- 
sure drops in excess of 1 atm. Experiments show that such pressure gra- 
dients have a strong influence on the band shape and thus should be taken 
into account (15). 

We shall study the solution of the system when the pressure gradient is 
different from zero in another work (30). 
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